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INVERSE PROBLEMS FOR EVOLUTION EQUATIONS 
OF THE INTEGRODIFFERENTIAL TYPE* 

T.A. TOBIAS and YU.K. ENGEL'BPEKHT 

The problem of determining the relaxation kernel using a solution of the 
inverse problem for an evolution equation which describes the distortion 
of the profile of an individual wave is analysed. The general case when 

the kernel is specified in parametric form , and the special case of an 
exponential kernel, are considered. The non-linear inverse problem is 
solved using the gradient method. For a linear equation the possibility 
of using the Laplace transformation method is pointed out. 

1. s uppose we are given the following equation of motion: 

~V,,(T.X)=C(O)V,,(T,X)+~ G(~)V~(F-ss,X)ds j 

V(0, X) = V, (0, X) = 0, V, (T,O) = 90 (T),d& V(T, X)= 0 

Here V is the transposition, p is the density, X is the Lagrange coordinate and T 
the time. The inverse problem for Eq.(l.l) consists of the following. The measurement 
X)= o(T,X) is specified at the point X =X, and it is required to determine the kernel 
using the function v((2,P). 

(1.1) 

For a stationary monochromatic wave of frequency o the following method is most effective 
for solving the inverse problem. The phase velocity c(o) and the attenuation coefficient 
are determined experimentally and the kernel C(I) /l/ is established using Fourier's trans- 
formation. The solution of the problem is quite complicated in the non-linear formulation. 
In this case it is feasible to break down the wave process into separate waves, which leads 
to a description of the evolution of the separate waves by the respective evolution equations 
/2/. In the general case the one-dimensional evolution equation of the first approximation 
for a longitudinal wave has the form 

aT u, -$ aeuu, - x II* (f,Z) K (1. - r)dr = 0 (1.2) 
i 

s=cOT-XX, i=cB 

where C, is the velocity of the longitudinal wave, E is some small parameter and u (f. ;) is 
the first approximation of the particle velocity (a transition to the deformation U, is 
possible) and K(c) is the kernel; the coefficient %,= coast determines the effect of the 
geometric and physical non-linearities /3/. Details of the transition from the second-order 
equation of type (1.1) or from the system of higher order to an evolution equation of type 
(1.2) are given in /2/. 

We shall add the following conditions to Eq.(1.2): 

u (0, z) = ug (z), u (1, 0) = 0 (1.3) 
We will assume that the kernel li(t)is such that Eq.(1.2) has a unique solution u (1, z), 

satisfying condition (1.3). The inverse problem for Eq.(1.2) consists of determining the 
kernel K(z) from the condition u(f,t)= I+ (z), where t= I is a fixed instant of time. It is 
well-known that, generally speaking, inverse problems are ill-posed. If we assume that the 
unknown kernel K(r) belongs to a specified compact set, 
If the relation between the measurement U,(Z) 

then the following is known /4/. 
and the kernel K(z) is one-to-oneand continuous 

(in the defined metric), then the above inverse problem is Tikhonov well-posed. 
of these conditions for a linear problem is established below. 

The validity 
In the non-linear formulation 

the required properties strongly depend on the properties of the class of permissible kernels 
K (I). 

The solution of the inverse problem (l.Z), 
with the problem of type (1.1) : 

(1.3) has a number of advantages compared 
the inverse problem of the evolution equation (1.2) with 

initial conditions has been investigated more than the inverse problem (1.1) with a boundary 
mode /4/; the direct problem of solving Eq.(1.2) /5, 6/ which enables us to determine the 
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distortion of the separate wave, corresponds very well to the possibilities of experimental 
technique; the order of the evolution equation is lower than that of the basic equation. 

Since equations of the (1.2) type are derived using an asymptotic method, the inverse 

problems of determining their coefficients or kernel in its own physical meaning can be termed 

asymptotic. Some possibilities of solving the inverse problem for Eq.(l.Z) in both tie linear 

and non-linear formulations with the arbitrary function % (2) are shown below. This enables 
us to use the proposed technique in pulse acousto-diagnostics. 

2. First consider the parametric case when the kernel is specified in the form L (2.~:. 
where CL is an unknown parameter. 

Consider the equation 

We will assume that the boundary and initial conditions agree, i.e. uo(0)= 0, Suppose 
EL = @XI. , . . a,i~~.where A is a closed, bounded and convex set in R,. Suppose the function, 
lifr.~&i is such that fcr any a~ff the unique solution U= u(r,z)- U(!.Z:ZI of Eq.fZ.1; exists 
and suppose ii (t. =: pi. <I~ (f. ~7: aj.0a. I;(z, a) and dh'(r,aLira depend continuously on the parameter 1. 
We will assume that if a,,,- a. then u,(I,r: 2,) converges uniformly together with the derivatives 
to the function urt.~:a) and its derivatives, respectively. 

Suppose there is the possibility of estimating (measuring, 1 the solution of Eq.(2.1) when 
*= i. As ci res;?t cf the measurement we will obtain the approximate value fir] of the exact 

Using this Infcrmat;on 'the function Fir,! it is required to determine the actual value 
a" of the par&meter Q E II. 

1f the exact fern; cf the solution LI!.I:Z is known, we have a problem of non-linear 
regression. B';t since the exact fern of +he solution is unknown, we are obliged to use other 
methods. We wi31 consider the problem c f determining the parameter ti using the observed 
value E(Z) as an optinizaticn psoblen;, i.e. we will take a= ii as the actual value of the 
parameter, suck that ii (i.~:?ii correspcnds in the best way (in the root-mean-square sense: tc 
the observed value ClS. 

Supgcse 

I\%: \iU~i.r:%]-. d/j. c.'.r i2 3) 

The problem cf identlfyinc the ~:lra:&ter cr ccr.s;sts cf the fcllccring: tc find ZE88. 
such that miu, I (c)= I(_;) Since k 1s 2; clcsf ar.d bG;;nded set, Z exists and the prctlez cf 

determining the sarameter h using the cbseraaticns is ccrrect. Nevertheless, if the namber 
cf components a,. ., a, is large, the problem cf determining the!?. becomes ill-posed and we 
m~.'lat fc,rmd?ate the prcbler cf choccing the number of parameters. Usually the number of para- 
meters is chosen to be minimal under the condition that the calculation data is comparable 
with the measurement data. Specifyins _ the error of measurement e, we need to require that 
j L II. s; a*i - p (Z) / 4 e. where CL* are the values, calculatec! wit:? respect to g(r). of the parameter 

a = (?I. ., a,‘. 
To find the so;uticr. ?i we most resort to different numerical methods which enable us 

tc constrilct the m;nir,~z:r.~ seqsence (ah)~ C) - F. In mcst of these methods the gradient Gf the 

function J ,z is ssed. 
We shall descrlte, for exaqF:e, the gradient projecticn method. 

suppose 
glad J (CL: = (tiJ,Ocr,. .,irJ/k~,l (2.41 

and P, (cxl is a I;rc;ecrlon cf the element ZER,, on to the convex space A. We will construct 

the seqaence GIL using the r‘;le 

C1 rl = P ,CP -! nrdd I (ZP)). k- i: z (1. 1. . (2.S) 

where fj; is a positive quantity. The conditions of convergence of the sequence '5): to the 

local mir,imurr cf the functlcr. J (C ax? the methoC7 cf choosing the step (h can be found, fcr 

example, in /7/. 
On the basis of Eq.(2.1) we will intrcdirce an expression for the gradient, i.e. we will 

find the function (2.4). A similar method of calculating the gradient using the conjugate 
equation was used, for example in 18;. 

3. We shall use us = u((.z;tl- JCZI to denote the solution of Eq.(2.1) by replacing a by 
(1 + Au = (al L- A,a,. or, - I?,,. Then 

("3 -u), j a"1 (U , - L.) UXA - a3,11 !!I A- U )\. - (3.1) 
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x 

& s K (t - z, a + ik.c) (u“ - u)~ dn - 
0 

us (0, I) - ” (0, z) = 0, uA (t, 0) - u (1.0) = 0 

We shall set ti== ~',(~.z:aj = d~,(~,~;a)/dsr,. We divide both sides of Eq.(3.1) by A% then as 

Aba- 0 we obtain 

i= f,...,n 
It is obvious that 

al w - = 2 
@a, 

[U (i. 2: a) -g (r)]vi (I, r; a)dt 

(3.2) 

(3.3) 

To transform this expression we will introduce the following equation which is conjugate 
to (2.1): 

-I,-_amP,u-$5ii(;--r,.!p,d:= (3.41 

2lu(1,r;(rj--(~jlC,(t--F), p(T,q=p(t,f)=O 

Here &(1-F} is the delta-function, ~=~(r,z;%!. where (1,~) ED = (0.~) x (O,~J, 0 <i <T < C.Z 
We shall multiply both sides of Eq,(3.4! by Y,(~.z:cL) and integrate them with respect to 

the domain D. Integrating by parts and using the boundary values of the functions r1 and p, 
we obtain 

c 
61(z) 

2 lu(f,r;II)-Peir)]~~i~.I:a)E(~-~i)drdl~b(L (3 r.8 
6 I 

From relations (3.2j, (3.5j, (3.E;, (3.7) and !3.6j it follows that 

(3.91 

It is obvious from Eq.(3.9) that method (2.5) xeqaires two integrodifferential equations 
at each step of the solution. Eqs.(2.1) and (3.4) are solved for ~l=uR. then csing Eq. (3.9j 
the gradient of the function J(a) is calculated and the new approximation e"-' is found using 
Eq.(2.5), etc. 

4. The parametric case when A = K IZ.Cz) was considered above. The direction of the 
gradient in the space of the parameters CYER~ was determined using Eq.(3.9), in which the 
solutions of Eqs.(Z.lj and (3.4) OCC~T. 
on the solutions of Eqs.(2.1j and (3.2'. 

We could also directly use Eq.(3.3), which_ depends 
But we need to turn to an expression--the form 

(3.9) in the non-parametric case when the unknown function K(r) is determined by observing 
s (xj. 

For example, suppose K(Z) I KC'(I) - o A'~(II. where Ku(r) is a known function. If the correction 
li' (I) is considered to be known, the parametric case of the determination of the parameter 
a. described in the previous section, occurs. But it may turn out that precisely the fozm 
of the correction X'(I) is unknown and h' (21 must be determined using the measurement. Then 
the linear increase, relative to Xl(z), of the functional J(K) is obtained by transformations 
similar to those used when deriving Eq.(3.9). 

Suppose L, is a class of quadratically integrable functions inthe segement 10. El. We put 
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Suppose U= u it.*; K) is a solution of the equation 

(7= 
s,+oaluu,- 'iiT s 

x (I- a)u, dz = 0 
0 

Y (0, I) = Up (I), U (GO) = 0 

(4 1) 

We will assume that KEMcL, where M is a convex compact set of smooth functions in L,, 

We will not refine the properties of the function R(r) and class M, and therefore the conclusions 
which follow below have a formal character. 
t;K) of Eq.(4.1) exists, 

Suppose for each KEM the unique solution U (f, 

and uX and which depends 
which has in the domain D=(O,r)x(O,~) the continuous derivatives IQ 
continuously on the function K together with the derivatives. 

Suppose 

I (C)&i, +; R)--g(+)J'dz 
0 

It is required to determine Ii* E M, such that J (K*) = minx,_w J (K). Since H 
set, K* exists. 

We will assume that the gradient of the functional I(K) exists. Then the 
projecting the gradient to calculate K* has the form 

K ,,+). = P, (A’, -1, grad I (K,,)), n = 0, i, . . 
where PM(f) is the projection of the element f on the convex compact set M. 

Suppose the function p= ~(r,r;K) satisfies Eq.(3,4), where the quantity 
replaced by the function K(z-2). We can then conclude (omitting the details1 

dl(K’;;aK” IaeO =(grad I (K),N) 

is a compact 

method of 

(4.2) 

K (z- *,a) is 
that 

Hence it is obvious that 

qrabii*.i=~~jY~(*.=-~~K)~(~~,~;P)drdl 
?I 

5. Suppose in Eq.(4.1) ool = 0. i.e. we have the linear equation 

U; - -$ \ h-i.> - :r i‘; dr .= 0: u in. II = U<,(f), u (2, 0) = 0 

where U@ lOi = 0. 
Li 

Suppose U, ii.z; = iz 1r.2~ & is given, and it is required to determine the function K(r) 
We will apply Laplace's transfonation using the argument t to Eq.(5.1!. 
Suppose 

For the function ri (1. 5. which depends on parameter s we will obtain the equation 

iit (f, s, - $X ($8 c (1. a) = 0. li ((1. si = i2, (S! 

whence ti (1. S) = li, (SI erp (Gb ($1 ,I, Since u pi. si =i ii, (s!. then 

(5.1) 

(5.2) 

In view of the fact that 7; is, does not depend on the i=I, a function A (s) must exist, 

such that the following condition holds: 

li (1. 8) = Ii, (6) exp (A (8) I) (5.3, 

Hence we obtain 
B (J) = A (s)isZ (5.4) 

Thus if condition (5.3) holds, where the function A (J) is such that A (t)/# is Laplace's 
transformation of the permissible functions REM, the function u(T,I)= g(r) uniquely defines 

the function K(z) for any f>@. 
It follows from Eq.(5.2) that a one-to-one and continuous mapping exists between the 

functions K(r) and u,(i,r)= u(i,r;K). Since X(z) belongs to the compact set M, the problem 
investigated is Tikhonov well-posed /4/. 



It should be noted, 
of the membership of the 
that the error in %(I,+) 
the given compact set M. 

Eqs.(5.3) and (5.4) 
problem. 
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however, that when u,(T,z) is specified with an error, the problem 
calculated kernel K in the compact set M arises. It is quite clear 
can lead to a situation when the kernel K(r) no longer belongs to 
In that case we need to use Tikhonov's regularization method. 
can serve as a solution of both Eq.(5.1) and the corresponding inverse 

Example. lo. Suppose n,(S)= a,(s)erpT (i.e. u&z)= u,(t)expr). We will obtain from (5.3) 
that A (8)sl. Eq.(5.4) gives B(~)=i/tl, whence K(Z)===. Eq.(S.l) is transformed to the form 
u,- II= 0, whence, in fact, Y (t,') = U@ (I) expr. 

Example. 2'. Suppose K(t)= aexp(-PI) and the function U,(C)= u(f, z;cr,b) is constructed 
using experimental data, on the basis of which it is required to determine the constants o 
and B. We will find $(I) and R(I)=Q/(s+~). From Eq.(5.4) we obtain that A(r)=crr'/(s+fQ. 

Then using (5.3) 
6, (8) = 8, (8) erp (=Ns + B)) (5.5) 

We can use many methods to determine the approximate values of the parameters (L and f, 
From Eq.(5.5) (also bearing in mind the random errors when constructing the function IQ(I), 
and thereby also L-I, (8)). 

6. s uppose in Eq. (5.1) K(I)= aexp(-bt). i.e. 

u,-~~~~lp[-~((I-I)]"l(I,z)d;_o (6.1) 
0 

We will set 

Since I+= IL,-@IL. we can replace Eq.(6.1) with the following equivalent system: 

II, - rru;= 0, I+- WX - 5zL = 0 
" (0, 2) = "0 (I). U (1, 0) = 0. u' (1.0) = 0 

Suppose S(I)= u(i.z;a,~) is specified. It is required to determine a and 6 such that 

and 

Consider the gradient method of determining the parameters Q and fi. 
We will set aui8a = ~1, au'@ = u?. Loa = IL'. b~'6fi = 11.2 
We can show that 

We will introduce the following conjugate systems: 

dp, 69, 
-T-T'- Iju(l.r;~.B)-:-(i)]h(l--i) 

dg, _ 
-dr y- a z - figI = 0, P, (7, I) = P, it, i) = g, (t. 5, = 0 

aP, _ 
-r -$ = 2[u (I. I: CI, 6)-E (Z)]O(l-T) 

cT fg2 _ aP2 
02 at - BP1 = 0, PA (1. S) = gz (7, I) = g* (t, i) = 0 

Using the arguments em?ioyed above, we can show that 

To determine the parameters o and B we have the following procedure: 
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where the quantitites A,, and t, determine the length of the step of the gradient method. 

7. The practical application of the methods discussed above encounter serious calculational 
difficulties. It is therefore best first of all to simplify the initial equation. We shall 
confine ourselves to one such simplification. 

Suppose Eq.(6.1) is given. It is required to minimize the function (6.2). 
We shall discretize Eq.(6.1) using Galerkin's method. Suppose {/k(r)) is a complete ortho- 

normalized set of functions at the section O<Z<E <:oc.fk(o)=o. Suppose 

u= u, ((, I; a, B) = $ B, (I)!( (I) 
i=l 

We shall substitute this expression into (6.1), 

fk (I) 

multiply both sides of the equation by 
and integrate it at the section &El. Finally, we will obtain the system ((~4" dq,;drr 

to determine the function ‘?k (2) = ‘?k (,: ‘1, b, 

qk’ (t) --? 2 ok, (6, 8, (t) = OS qk (O) = ck’ k=l,...,.j (i.1) 

I=1 
0) x 

U” ir) = 
2 

C,!, (f). Ok, (B) = 1 c 
1, =1 i 

y& 

i 

exp (- B (I - 2)) J,’ (4 (82) jk (4 d+ 

It is required to find ? and fi; suchthat they minimize the function 

The classical optimal control problem is obtained, to solve which there ars well-developed 
and effective methods /7/. Note that, in principle, we can write the solution of system (7.1) 
analytically. 

1. 

2. 
3. 

4. 

5. 
6. 

7. 
6. 
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