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INVERSE PROBLEMS FOR EVOLUTION EQUAIIONS
OF THE INTEGRODIFFERENTIAL TYPE

T.A. TOBIAS and YU.K. ENGEL'BREKHT

The problem of determining the relaxation kernel using a solution of the
inverse problem for an evolution equation which describes the distortion
of the profile of an individual wave is analysed. The general case when
the kernel is specified in parametric form, and the special case of an
exponential kernel, are considered. The non-linear inverse problem is
solved using the gradient method. For a linear equation the possibility
of using the Laplace transformation method is pointed out.

1. Suppose we are given the following equation of motion:

PUpr (T, X) =G (0) Uy (T, x>+—:7- CEUg(T—s X)ds (1.1

5
U©X)= Uz 0.X)=0, Ug(T,0=g (N, lim¥U (T, X)=0

Here U is the transposition, p is the density, X is the Lagrange coordinate and T is
the time. The inverse problem for Eq.(l.l) consists of the following. The measurement U, (T,
X)=¢(I,X) is specified at the point X =YX, and it is required to determine the kernel 6 ()
using the function ¢(7,X).

For a stationary monochromatic wave of frequency o the following method is most effective
for solving the inverse problem. The phase velocity c¢(w) and the attenuation coefficient
are determined experimentally and the kernel G (s) /1/ is established using Fourier's trans-
formation. The solution of the problem is quite complicated in the non-linear formulation.
In this case it is feasible to break down the wave process into separate waves, which leads
to a description of the evolution of the separate waves by the respective evolution equations
/2/. In the general case the one-dimensional evolution equation of the first approximation
for a longitudinal wave has the form

X
u'-!-ao‘uu:—%guz (4, 2)R (x—2)dz2 =0 (1.2)
0

= ¢ T — X, t=¢X

where ¢ is the velocity of the longitudinal wave, ¢ is some small parameter and u (.. 1) is
the first approximation of the particle velocity (a transition to the deformation uy, is
possible) and K (2) is the kernel; the coefficient ay = const determines the effect of the
geometric and physical non-linearities /3/. Details of the transition from the second-order
equation of type (1.1) or from the system of higher order to an evolution equation of type
(1.2) are given in /2/.

We shall add the following conditions to Eq.(1.2):

u(0,2)= uy (z), u(t,0)= 0 (1.3)
We will assume that the kernel K (z) is such that Eq.(1.2) has a unigue solution u (¢, 2),
satisfying condition (1.3). The inverse problem for Eg.(l,2) consists of determining the

kernel K (z) from the condition u(f,z)=u; (z), where t=7 is a fixed instant of time. It is
well-known that, generally speaking, inverse problems are ill-posed. 1If we assume that the
unknown kernel K (z) belongs to a specified compact set, then the following is known /4/.

If the relation between the measurement u, (z) and the kernel K (z) is one-to~one and continuous
(in the defined metric), then the above inverse problem is Tikhonov well-posed. The validity
of these conditions for a linear problem is established below. In the non-linear formulation
the required properties strongly depend on the properties of the class of permissible kernels
K (z).

The solution of the inverse problem (1.2), (1.3) has a number of advantages compared
with the problem of type (1.1): the inverse problem of the evolution equation (1.2) with
initial conditions has been investigated more than the inverse problem (1.1) with a boundary
mode /4/; the direct problem of solving Eq, (1,2) /5, 6/ which enables us to determine the
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distortion of the separate wave, corresponds very well to the possibilities of experimental
technique; the order of the evolution equation is lower than that of the basic equation.

Since equations of the (1.2} type are derived using an asymptotic method, the inverse
problems of determining their coéfficients or kernel in its own physical meaning can be termed
asymptotic. Some possibilities of solving the inverse problem for Eg.(1.2) in both the linear
and non-linear formulations with the arbitrary function u,(z) are shown below. This enables
us to use the proposed technigue in pulse acousto-diagnostics.

2. First consider the parametric case when the kernel is specified in the form & (2. a:.
where o is an unknown parameter.
Consider the egquation

x
u‘-{—amuux—.;; \K z—z,m)udi=0 @h
¢

u (0, 2) 5= up (). u (t,0) =0

We will assume that the bounda¥y and initial conditions agree, i.e. u{(0)= 0. Suppose
={&.....o0'e= 4. where 2 is a closed, bounded and convex set in R,. Suppose the function
K{z.a) is such that for any =z 4 the unigue sclution w= ui,2) = u{t, s:2} of Eq.{2.1) exists
and suppose w (. z:ial ow . 2 ajox, K{r,a) and 0K (z,a¥éx depend continuocusly on the parameter «.
We will assume that if a, — «. then u, (f, 1.2, converges uniformly together with the derivatives
to the function vui(t.z;a) and its derivatives, respectively.

Suppose there is the possibility of estimating {(measuring) the solution of Eqg.(2.1) when
= I. As a result of the measurement we will obtain the approximate value g(zy of the exact
solution, i.e.

wer

wnt= w{f. i =g —efr), U 1< {2.2)

Using this infermatiorn ‘the function gz it is reguired to determine the actual vaiue
a* of the parameter a& 4.

If the exact form cf the solution w2z is known, we have a problem of non-linear
regression. ut since the exact form of the sclution is unknown, we are cbliged to use other
methods, We will consider the problem of determining the parameter « using the observed
value g(z) as an optimizaticn problem, i.e. we will take «=7& as the actual value of the
parameter, such that u(. 2% corresponds in the best way (in the root-mean-sguare sense; tc
the observed value gir,

sSuppcese N
Jmp e \fud. zia) = iapjor (2.3)
Ei

The problem cf identifying the parameter o consists of the following: te find Ted
such that ming .?w)‘.? (%3, Since A iz & clesed and bounded set, % exists and the prekblen of
determining the parameter & using the cobservations ig ccrrect. Nevertheless, if the number
cf components g,....,a, is large, the problem of determining them becomes ill- -pesed and we
mact fermulate the probler of chocsing the number of parameters. Usually the number of para-
meters is chosen to be minimal under the condition that the calculation dats is comparable
with the measurement data. Specifying the error of measurement ¢, we need to require that
jed. et —g (2} < &, where a* are the values, calculated with respect to g{x}. of the parameter -
o = (%, ... Qpt

To find the scluticr & we must resort to different numerical methods which enable us

imizinc seguence ({a'). ¢ — 7. In most of these methods the gradient of the

tc construct the mi
function J(x1 is used.
we shall descrite, for example, the gradient projecticrn method.

Suppose grad J (o = (aJ/0u;. . . ., 6Flony) {2.4)

and P, (o} is a proiection of the element a& f, on to the convex space A. We will construct

k)

the seguence z* using the rule
2 = Pt 1 grad T k=000 (2.5¢
where 1, is & positive guantity. The conditions of convergence of the sequence. =z* to the
local minimum of the functicn J i and the method c¢f chocsing the step 4 can be found, fcr
example, in /7/. ‘ ' ,
On the basis of Eq.{2.1} we will introduce an expression for the gradient, i.e, we will
find the. function (2.4). A similar method of calculating the gradient using the conjugate

equation was used, for example in /8/.

3. We shall use u® = uir.z;a = 3z tc denote the solution of Eg.(2.1) by replacing a by
a 4 Am = (ay + Aay. .. ..a, —~ A2, Then

(> —u), - an d — ) u S e Y — )~

(3.1}
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K (z — 2, a+ Aa) (@b —u), dz —

o
ai"’
R Oy

[Kg—z 2+ da)—K(z—z a)ju,di=

RN

@

u:’(O,:)—u(O‘I)=0‘ uA(t,O)—u(f.O)a.-O

We shall set ¢ = 1 ({. 7, a) == du (, z; a)/on;. We divide both sides of Eg.(3.1) by As;, then as
Ao — 0 we obtain

x
Sw u, dz, vy 0, 2)==v, (1, 0) = 0 3.2)

x
9 . a
R AL T T IR e
[

[']
i=14,...,.n
It is obvious that

8 R
“;T(?')=2§[Lt(?. z; @)~ g ()] vy (T, 23 @) dx (3.3)
[

To transform this expression we will introduce the following eguation which is conjugate
to (2.1):
s}
— Py — 2Pl —‘3;31\' =z, 0)p,d:= 3.4
x
2ty —g]dt—~N, pla=pt, B =0

Here 6(—f) is the delta~function, = p(t, z; 2}, where

we shall multiply both sides of Eg.(3.4) by rni{t,za)
the domain D.
we obtain

(t,oeD=(01x 0% 0l T
and integrate them with respect to
Integrating by parts and using the boundary values of the functions « and p,

- gl .
2 g[u (t, s oy —e(r)]v, it 2y a)b(t —7)dr dt = 001(&) (3.5
5 i
— (ovarat= (up parar (3.6
bl b
— \ pur,drdt = S(uri\xpdrdt 3.7
b n
Ty ok
— \'iKK('»z ayp it maYdor {t, 7 aVdrdl = (3.8
.‘.5'79 - ’ ;P: o PR - '
00 x
T £ z R
Q g o UK'* Gr ozt a)
...‘dt \ p(t.,,a)é—:‘l\(,—-:r. a) Frs dr dx
¢ 0 o
From relations {3.2), (3.5, (3.€:, (3.7) and {3.8) it follows that
Ti x
6l (2) a { oN(x—:z, o) » . » o
o zv‘\e}-s;b————-—-:.Fi—-ul(t.~.a)d.p(t.:,a)ardi (3.9}
¢ ©

It is obvious from Eg.(3.9) that method (2.5)
at each step of the solution. Egs.(2.1l) and (3.4}
the gradient of the function J(a}
Eg. (2.5}, etc.

reguires two integrodifferential eqguations
are solved for a=a*, thern using Eg.(3.9)
is caiculated and the new approximation ‘! is found using

4. The parametric case when A = K (r,a) was considered above. The direction of the
gradient in the space of the parameters ae R, was determined using Eg. (3.9), in which the
solutions of Eqgs.(2.1) and (3.4) occur. We could alsc directly use Eq.(3.3), which dépends
on the solutions of Egs.(2.1) and (3.2'. But we need to turn to an expression-oF the form
(3.9) in the non-parametric case when the unknown function K (2) is determined by observing
g (2.

For example, suppose A (z)= K®(r) —a A! (), where Kv(z) is a known function. If the correction
K'{z) is considered to be known, the parametric case of the determination of the parameter

@, described in the previous section, occurs. But it may turn out that precisely the form

of the correction K'(z) is unknown and A'(x) must be determined using the measurement. Then
the linear increase, relative to KA! (5, of the functional J(X) is obtained by transformations
similar to those used when deriving Eq.(3.9).

Suppose L, is a class of quadratically integrable functions in the segement  [0.}]. We put
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E
o ={nenee
1]
Suppose u= u (s, z K) is a solution of the eguation

']
u,+ag,uux--3;§K(z——z)uzdz=0 t4.1)
0
u (0, 2) = uy (z), (1,0 =0

We will assume that K e M (C L, where M is a convex compact set of smooth functions in L,
We will not refine the properties of the function X {«) and class M, and therefore the conclusions
which follow below have a formal character. Suppose for each K= M the unigque solution uft,
z; X} of Eq.(4.1) exists, which has in the domain D= (0, 1) x (0, }} the continuous derivatives u
and u, and which depends continuously on the function X together with the derivatives.
Suppose

t

13
1) =S s Ky —g @z
8

It is required to determine X*e M, such that J (K%)= ming . J(K). Since M is a compact
set, K* exists.

We will assume that the gradient of the functional J(K) exists. Then the method of
projecting the gradient to calculate X* has the form

Kpy = Ppy (Kn — tngrad J (Kp)), n=0, 1,... {4.2)

where Py, (/) is the projection of the element f on the convex compact set M.

Suppose the function p=p{r, z; K) satisfies Eg.{3.4), where the guantity K{—az,a) is
replaced by the function X ({:—z). We can then conclude (omitting the details) that

1 §

dl (K¢ + oK} . AN ’

(—da—a—)-uzo=(gradl(ﬁf),}sl) mf\§6—ySu:(hz-—-y; Kyp(t, z K)dzh' (y)dy dt
[4 v

0
Bence it is obvious that

4
(u_\, {t,x—y Rypy, vy Kyde dt

1

g

T
grad J(K) = K E
o

5. Suppose in Eq.{4.1) o, =0, i.e. we have the linear equation

x
d -
U, - -d—l_-Q Ko —ziv de =0 wido )= (z), u{t,0)=0 5.1)

where i {0 = 0. ¢

Suppose uy {f.s)= u(f. 21 Av is given, and it is required to determine the function X (.

We will apply Laplace's transformation using the argument =z to Eq.(5.1).

Suppose

Lu=1ait si = ( exp{—sryu{l. 2)dz

«

4
Lug=13g(st. LK =K {st. Lu,= iy (s)

For the function &(t.s: which depends on parameter s we will obtain the equation
Gt st — SR (s (o) = 0, 8 (0. 8) = i (s)
whence (1, & = g, (siexp (K (s} 1;. Since u (7.5 = iy {5), then

iy (83
g i}

- 1 -
K (s) = =r in {5.2)
In view of the fact that XK (s does not depend on the :=1, a function 4 {(s) must exist,
such that the following condition helds:
i (£, &) = d, (s) exp (4 (5) 1) (5.3}

Hence we obtain K (s) = A (s)fs? (5.4)

Thus if condition (5.3) holds, where the function 4 () is such that 4 (¢¥/® is Laplace's
transformation of the permissible functions K e M, the function u(f,z) = g{z) uniquely defines

the function K (1) for any ¥> 0. ‘ '

It follows from Eq.(5.2) that a one-to-one and continuous mapping exists between the
functions X (z) and u, (f,2)= u(f,z; K). Since K (z) belongs to the compact set M, the problem
investigated is Tikhonov well-posed /4/.
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It should be noted, however, that when u(f,z) is specified with an error, the problem
of the membership of the calculated kernel K in the compact set M arises, It is quite clear
that the error in u (f,z) can lead to a situation when the kernel K (z) no longer belongs to
the given compact set M. In that case we need to use Tikhonov's regularization method.

Egs.(5.3) and (5.4) can serve as a solution of both Eq.(5.1) and the corresponding inverse
problem.

Example. 1°, Suppose u,(s)= i, (s)exp? (i.e. u(f,z)=1u,(z)exps). We will obtain from (5.3)
that 4 () =1. Eq.(5.4) gives & (s)= 1/s?, whence KX (z)=z. Eq,(5.1) is transformed to the form
uyy —u=0, whence, in fact, u(t, z)= uy(3)expt.

Example. 2°, Suppose K (r) = xexp(—fz) and the function u(z)=u(f, z;ia,p) is constructed
using experimental data, on the basis of which it is required to determine the constants a
and B. We will find &,() and K (s)=ua/(s 4 B). From Eq.(5.4) we obtain that A(s)=as®/(s+p).

Then using (5.3)

iy (5) = dq (s) exp (25’t/(s 4+ B)) (5.5)

We can use many methods to determine the approximate values of the parameters a« and §
From Eq.(5.5) (also bearing in mind the random errors when constructing the function u (z),
and thereby also g, (s).

6. sSuppose in Eq. (5.1) K (z)=aexp(—pz). i.e.

o {
U —a—g—\exp[— Pz —2)]u, (t,2)d:= 0 (6.1)
[}
We will set

x
wit, z)= Sexp[—ﬁ(z—z)]ul {t, 2)dz
[

Since w;= u, — fuw. we can replace Eq. (6.1) with the following equivalent system:

Uy — aug =0, 4y — wy — Pu =0
u(0,2) = u(z). u{,0) =0, w{t,0)=190
Suppose g(z)=u(f,z;a,B) is specified. It is required to determine a and B such that
1
Ja, B)= S [ul, z; 2, B) — £ (2)]*dz — min (6.2)
0
Consider the gradient method of determining the parameters « and §.
We will set duw/da = u!, ou'df = u?, ow/oa = wl, 6u/ép = vt
We can show that

vl—qul=w, ul—wl—Pul=0

t x x x

Wl z) =l (t.O)= (1, =90

and [ 2 Byl = g
u, au,x_(], u w, Bu? = u

ur (0, 2) = wi(t, 0) = ulit, 0) = 0O

We will introduce the following conjugate systems:

_%_%—"]u(l:aﬁ SEDEXE)

— e =0 =R =g D=0
_%_Z‘iz =2uit. i a, By—e (] bt —1)

a%f Z?—ﬁp.—o Pl =g o) =gt i)=0

Using the arguments employed above, we can show that

oJ a ) ¢
ﬁ Rp, (t, z: a, B) w lt, 13 a, B)dzat
o
3

T

0

T
a) (a Bv

pa(t. 7, BYu t, 7; @, B)dr dt
0

©a

To determine the parameters o« and B we have the following procedure:

8l (a,. B, 6J (2. B)
@y =0, — 8, —— T B,legn_,n—dgn.
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where the quantitites s, and t, determine the length of the step of the gradient method.

7. The practical application of the methods discussed above encounter serious calculational
difficulties. It is therefore best first of all to simplify the initial equation. We shall
confine ourselves to one such simplification.

Suppose Eg.(6.1) is given. It is required to minimize the function (6.2).

We shall discretize Eq.(6.1) using Galerkin's method. Suppose {/x(z)} is a complete ortho-
normalized set of functions at the section 0<z<t<x oo, fy (0) = 0. Suppose

umup (i, 7y a, By = 2:;1 )i (2)
We shall substitute this expression intoc (6.1), multiply both sides of the equation by

f¥(z) and integrate it at the section [0,%]. Finally, we will obtain the system (¢ = dg/dn
to determine the function er () = ¢y (1; 2, B)

N

) — 2 Z 8 BIG, (1) =0 ¢ ) =c, k=1,..., N (7.1)
=1
o« a Ed
uy () = E v (B = _(_dz SGXP (=B lz—2)) 1)/ (2) (B2) jy (2} dz
=1 [ 0

It is required to find « and B, such that they minimize the function
N
Tyt B = 32 (7 /h(z>~ﬂ(z>}dr

The classical optimal control problem is obtained, to solve which there ares well-developed
and effective methods /7/. Note that, in principle, we can write the solution of system (7.1)
analytically.
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